Supporting Multiple Pathways in HB 5 College Prep Math Courses

Susan May, Course Program Specialist
Josh Recio, Course Program Specialist

July 12, 2019

Engage with the Dana Center

facebook.com/utdanacenter

@UTDanaCenter

Conference Hashtag: #
About the Dana Center

Equity — Access — Excellence

Dana Center by the Numbers

Major grant received from the Bill & Melinda Gates Foundation for our Launch Years initiative, which aims to improve student success in high school mathematics.
Dana Center by the Numbers

We provided professional development for Department of Defense Education Activity teachers, benefiting 88,500 students in 14 countries.

88,500

Dana Center by the Numbers

We launched “deep dive” work with higher education systems in 4 new states, expanding DCMP’s footprint to more than 30 states.

+4
Dana Center by the Numbers

200,000 students

Nearly 200,000 students in 32 states were served by Dana Center–Agile Mind courses, recognized for their quality by multiple review panels including EdReports.

Dana Center by the Numbers

OpenSciEd

264 teachers

10 states

Received our support in field testing new open education science resources from OpenSciEd.
Dana Center by the Numbers

Nearly 1,000 Louisiana teacher-leaders and mentors received capacity-building support from our professional learning facilitators.

1,000 teacher-leaders

Dana Center by the Numbers

Local, state, and national organizations collaborated with the Dana Center to ensure all students have equitable access to an excellent education.
Dana Center by the Numbers

Downloads of free resources for elementary and secondary classrooms from Inside Mathematics.

1,500,000

People who viewed MathCuts—quick, engaging strategies for K–6 classroom teachers—on Facebook.
Dana Center by the Numbers

We conducted **150 professional learning sessions** for K–12 math and science teachers and administrators.

Dana Center by the Numbers

Over **4,300,000** pages of our curricula, assessments, or professional learning sessions are published in-house and sent around the world.
Agenda

- Dimensions of college readiness
- Naming barriers
- Trends in higher education
- Investigating multiple pathways

Building Momentum

- Academic knowledge and skills
- Noncognitive skills
- College cultural capital

Building Student Momentum From High School Into College, Jobs for the Future, February 2016
Drivers that Create Barriers for Students in College

Mathematics is an obstacle to degree completion and equitable outcomes for millions of students. High failure rates are not due to students or faculty. The problem lies in how mathematics programs are structured.

Mathematics Pathways Movement

Student Progression Through the Developmental Math Sequence

<table>
<thead>
<tr>
<th>Course Level</th>
<th>Referral to 3+ Levels of Remediation</th>
<th>Did Not Enroll in Next Course</th>
<th>Did Not Pass/Complete Course</th>
<th>Passed Gatekeeper Math</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>26%</td>
<td>15%</td>
<td>2%</td>
<td>11%</td>
</tr>
<tr>
<td>Level 2</td>
<td>9%</td>
<td>7%</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>Level 3+</td>
<td>4%</td>
<td>4%</td>
<td>2%</td>
<td></td>
</tr>
</tbody>
</table>

“College ready” for what (math)?

Why Worry About Alignment?

Mathematical Association of America’s 2004 CUPM Curriculum Guide
“Unfortunately, there is often a serious mismatch between the original rationale for a college algebra requirement and the actual needs of the students who take the course.”

Endorsed by
• American Mathematical Association of Two-Year Colleges
• American Mathematical Society
• American Statistical Association
• Society for Industrial and Applied Mathematics
College Algebra?

- College Algebra was originally intended to prepare students for calculus.
- In 2004, the Mathematical Association of America (MAA) called for the end of using College Algebra as a terminal mathematics course, citing a serious mismatch between the original rationale for College Algebra and the mathematical needs of students who take the course.

The Move to Mathematics Pathways

- In 2015, the MAA, along with four major mathematical professional associations, called for multiple mathematics pathways that are aligned to fields of study.
- Some colleges and universities have begun to respond by implementing math pathways, such as quantitative reasoning, statistics, technical mathematics (for certificate programs), and a redesigned algebraic-intensive/or Calculus pathway.

Mathematics Pathways Movement

2-YEAR COLLEGE STUDENT ENROLLMENT INTO PROGRAMS OF STUDY

4-YEAR COLLEGE STUDENT ENROLLMENT INTO PROGRAMS OF STUDY

Anatomy of the Framework

Understanding the architecture and content

College Prep Math Framework

- Organized around student learning goals and objectives
- Reflects modern mathematics
 - Applying mathematical processes
 - Numeric reasoning
 - Proportional reasoning
 - Algebraic reasoning
 - Probabilistic reasoning
 - Quantitative reasoning
A Closer Look at the Framework

Consider these student outcomes:

• 3A
• 3C
• 6D

What classroom activities would support students in meeting the outcomes at the level necessary for college readiness?

Ratios in Water Use

Lesson 4, Part C,
Ratios in water use

In previous lessons, you analyzed how quickly Earth’s population is growing. Rapid population growth could impact sustainability—that is, Earth’s ability to continue to support human life.

Credit: Waterfootprint.org
A Closer Look at the Framework

Consider these student outcomes:

• 3A
• 3C
• 6D

How did the model lesson support students in meeting the outcomes at the level necessary for college readiness?

An Overview of the Course

Transition to College Mathematics, Version 2
Course Outline 2019-20

Unit 1 (4 weeks)

• Lesson 1: Building the foundations for our success
 o Building the foundations for our success – Student success focus

• Lesson 2: Getting started
 o How big is a billion – Quantitative reasoning, large numbers
 o Building a learning community – Student success focus
 o How big is a billion (cont.) – Quantitative reasoning, large numbers
 o Building a learning community (cont.) – Student success focus

• Lesson 3: Working in groups and Creating success teams
 o Working in groups – Student success focus
 o Creating success teams – Student success focus

• Lesson 4: Ratios and numbers
 o Doubling population – Large numbers, doubling, rates, introduction to note taking
 o Scientific notation – Representing numbers in scientific notation, converting back to standard notation
 o Ratios in water use – Large numbers, ratios, scientific notation
 o Analyzing water footprints – Scientific notation, ratios
Looking at Multiple Pathways

• What do you notice?
• What excites you?
• What do you have questions about?

Model Course Implementation

2016-17 and 2017-18 academic years

• Cohort 1: 2016-2017
 • 353 students
 • 10 school districts
 • 4 institutions of higher education
 • 61% of students college ready

• Cohort 2: 2017-2018
 • 1,066 students
 • 32 school districts
 • 8 institutions of higher education
 • 52% of students college ready
Stories from the field

Examples of two districts in our study that showed significant gains in college readiness after implementing Transition to College Mathematics.

Student voices

- “This class has helped me learn how to think and put a plan into action before giving up or saying I can't do something.”
- “I've been able to interact and by interacting I learn new strategies and things I've never learned before that make processes simpler and more understandable.”
- “It has showed me problem solving skills and has convinced me that I can get smarter.”
- “I've learned real world math that I know I will use in the future.”
- “It has taught me that I am smarter than I thought.”
Engage with the Dana Center

facebook.com/utdanacenter

@UTDanaCenter

Conference Hashtag: #

Contact Information

Susan May
skmay@austin.utexas.edu
512.475.7137

Josh Recio
josh.recio@austin.utexas.edu
512.232.5994

Visit the Dana Center at utdanacenter.org.