Teaching Elementary Students to Speak the Language of Mathematics through Mathematical Discourse

Michael Greenlee, Professional Learning Facilitator, Elementary Math

July 10, 2019, CAMT Annual Conference

Dana Center by the Numbers

We provided professional development for Department of Defense Education Activity teachers, benefitting 88,500 students in 14 countries.

88,500
Dana Center by the Numbers

Nearly 1,000 Louisiana teacher-leaders and mentors received capacity building support from our professional learning facilitators.

1,000 teacher-leaders

Dana Center by the Numbers

People who viewed MathCuts—quick, engaging strategies for K–6 classroom teachers—on Facebook.

1,500,000
Objective

Understand the process for orchestrating productive mathematical discourse and how it can deepen student understanding.
The National Council of Teachers of Mathematics book:

5 Practices for Orchestrating Productive Mathematics Discussions

5 Practices for Orchestrating Productive Mathematics Discussions

- Anticipating student responses prior to the lesson
- Monitoring students’ work on—and engagement with—the tasks
- Selecting particular students to present their mathematical work
- Sequencing students’ responses in a specific order for discourse
- Connecting different students’ responses, and connecting the responses to key mathematical ideas
Anticipating student responses

Mathematics

Consider which strategies are likely to be most useful in addressing the content.

Consider which strategies students are likely to use.

Consider how to respond to likely student work.

Orchestrating productive mathematics discussions

A third-grade class is setting up chairs for a school talent show. The class needs to set up 8 rows of chairs with 30 chairs in each row, leaving space in the middle for a center aisle. The class needs to know how many chairs they need to get out of storage to set up for the show.

Learning goal: How is the structure of multiplication evident in different representations?
Anticipating student responses

Mathematics

Consider which strategies are likely to be most useful in addressing the content.

Consider which strategies students are likely to use.

Consider how to respond to likely student work.

Anticipating student responses

<table>
<thead>
<tr>
<th>Math Task: (Anticipating student responses prior to the lesson)</th>
<th>Content Standard(s):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategy (Student or Small Group: Selecting students to present their work)</td>
<td>Work That Will be Shared: Connecting responses to one another and to key mathematical ideas)</td>
</tr>
</tbody>
</table>

Planning for Mathematical Discourse
5 Practices for Orchestrating Productive Mathematics Discussions

- **Anticipating** student responses prior to the lesson
- **Monitoring** students’ work on—and engagement with—the tasks
- **Selecting** particular students to present their mathematical work
- **Sequencing** students’ responses in a specific order for discourse
- **Connecting** different students’ responses, and connecting the responses to key mathematical ideas

Orchestrating productive mathematics discussions

Monitoring students' work on, and engagement with, the task

<table>
<thead>
<tr>
<th>What does this involve?</th>
<th>How is this supported?</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Circulating while students work, watching and listening</td>
<td>• Anticipating student responses beforehand</td>
</tr>
<tr>
<td>• Recording interpretations, strategies, and points of confusion</td>
<td>• Using a recording tool</td>
</tr>
<tr>
<td>• Asking probing questions to get students back “on track” or to advance their understanding</td>
<td>• Observing students’ actual responses during independent work</td>
</tr>
</tbody>
</table>

5 Practices for Orchestrating Productive Mathematics Discussions

- **Anticipating** student responses prior to the lesson
- **Monitoring** students’ work on—and engagement with—the tasks
- **Selecting** particular students to present their mathematical work
- **Sequencing** students’ responses in a specific order for discourse
- **Connecting** different students’ responses, and connecting the responses to key mathematical ideas
Orchestrating productive mathematics discussions

Selecting particular students, or groups of students, to present their mathematical work

<table>
<thead>
<tr>
<th>What does this involve?</th>
<th>How is this supported?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choosing students to present because of the mathematics in their responses</td>
<td>Anticipating and monitoring</td>
</tr>
<tr>
<td>Making sure that over time all students are seen as authors of mathematical ideas and have the opportunity to demonstrate competence</td>
<td>Planning in advance which types of responses to select, perhaps considering an incorrect solution to illustrate a typical misconception</td>
</tr>
<tr>
<td>Gaining some control over the content of the discussion</td>
<td>Being ready to consider unexpected solutions</td>
</tr>
</tbody>
</table>

Orchestrating productive mathematics discussions

Sequencing students’ responses in a specific order for discussion

<table>
<thead>
<tr>
<th>What does this involve?</th>
<th>How is this supported?</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Purposefully ordering presentations so the mathematics is accessible to all students</td>
<td></td>
</tr>
<tr>
<td>• Building a mathematically coherent storyline from prior knowledge to current grade-level standards.</td>
<td>• Anticipating, monitoring, and selecting</td>
</tr>
<tr>
<td>• During anticipation of work, considering how possible student responses are mathematically related</td>
<td></td>
</tr>
</tbody>
</table>

Planning for Mathematical Discourse

<table>
<thead>
<tr>
<th>Math Task:</th>
<th>Content Standard(s):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategy (Anticipating student responses prior to the lesson)</td>
<td></td>
</tr>
<tr>
<td>Student or Small Group (Selecting students to present their work)</td>
<td></td>
</tr>
<tr>
<td>Work That Will Be Shared (Connecting responses to prior knowledge and key mathematical ideas)</td>
<td></td>
</tr>
<tr>
<td>Order (Sequencing responses in a specific order for discussion)</td>
<td></td>
</tr>
</tbody>
</table>
Orchestrating productive mathematics discussions

Ways to **Sequence**

- Begin with the strategy used by the majority of students before moving to those strategies that only a few students used.
- Begin with a strategy that is more concrete, then move to strategies that are more abstract.
- Present strategies that address common misconceptions.
- Have related or contrasting strategies presented one right after the other.

A third-grade class is setting up chairs for a school talent show. The class needs to set up 8 rows of chairs with 30 chairs in each row, leaving space in the middle for a center aisle. The class needs to know how many chairs they need to get out of storage to set up for the show.

Learning goal: How is the structure of multiplication evident in different representations?
With your group, analyze the student work samples for strategies and misconceptions, then...

- **Select** student work that would best represent the strategies that would help build understanding of the math.
- **Sequence** the selected student work in the order that your group determines would best help the students make sense of the math.
- Fill in the tool to illustrate your selected strategies and the sequence you would have them presented in your class to help students make sense of the math.

5 Practices for Orchestrating Productive Mathematics Discussions

- **Anticipating** student responses prior to the lesson
- **Monitoring** students' work on—and engagement with—the tasks
- **Selecting** particular students to present their mathematical work
- **Sequencing** students’ responses in a specific order for discourse
- **Connecting** different students’ responses, and connecting the responses to key mathematical ideas
Orchestrating productive mathematics discussions

Connecting different students’ responses, and **connecting** the responses to key mathematical ideas

<table>
<thead>
<tr>
<th>What does this involve?</th>
<th>How is this supported?</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Encouraging students to make mathematical connections between different student responses through questioning</td>
<td></td>
</tr>
<tr>
<td>• Making the key mathematical ideas that are the focus of the lesson salient</td>
<td></td>
</tr>
<tr>
<td>• Considering extensions as they come from the students or the teacher</td>
<td></td>
</tr>
<tr>
<td>• Anticipating, monitoring, selecting, and sequencing</td>
<td></td>
</tr>
<tr>
<td>• Considering how students might be prompted to recognize mathematical relationships between responses</td>
<td></td>
</tr>
<tr>
<td>• Cultivating a classroom culture with explicit supports for student discourse</td>
<td></td>
</tr>
</tbody>
</table>

Planning for Mathematical Discourse

<table>
<thead>
<tr>
<th>Math Task:</th>
<th>Content Standard(s):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategy (Anticipating student responses prior to the lesson)</td>
<td>Work That Will Be Shared (Selecting students to present their work; Connecting responses to one another and to key mathematical ideas)</td>
</tr>
<tr>
<td>Student or Small Group (Selecting students to present their work)</td>
<td></td>
</tr>
</tbody>
</table>

25

Orchestrating productive mathematics discussions

Planning for Mathematical Discourse

<table>
<thead>
<tr>
<th>Math Task:</th>
<th>Content Standard(s):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategy (Anticipating student responses prior to the lesson)</td>
<td>Work That Will Be Shared (Selecting students to present their work; Connecting responses to one another and to key mathematical ideas)</td>
</tr>
<tr>
<td>Student or Small Group (Selecting students to present their work)</td>
<td></td>
</tr>
</tbody>
</table>

26
A third-grade class is setting up chairs for a school talent show. The class needs to set up 8 rows of chairs with 30 chairs in each row, leaving space in the middle for a center aisle. The class needs to know how many chairs they need to get out of storage to set up for the show.

Learning goal: How is the structure of multiplication evident in different representations?

Write notes to describe how you would make connections between the students’ strategies—and how you would connect these strategies to the learning goal.
Orchestrating productive mathematics discussions

Take a few minutes to think about and answer the following questions:

- What strategies can you use to ensure that ALL students engage in mathematical discourse in your classroom?
- What can you do to leverage incorrect or incomplete reasoning or solutions to strengthen the learning of all students?
- Based on your learning for this section, what action step(s) might you take in order to foster student mathematical discourse in your classroom?

Contact Information

Michael Greenlee
michael.greenlee@austin.utexas.edu
512.693.9273
@UTDCMike

Visit the Dana Center at udanacenter.org.

Find us on Facebook at facebook.com/udanacenter or on Twitter at @UTDanaCenter.